InGaN-based light-emitting diodes with an embedded conical air-voids structure.
نویسندگان
چکیده
The conical air-void structure of an InGaN light-emitting diode (LEDs) was formed at the GaN/sapphire interface to increase the light extraction efficiency. The fabrication process of the conical air-void structure consisted of a dry process and a crystallographic wet etching process on an undoped GaN layer, followed by a re-growth process for the InGaN LED structure. A higher light output power (1.54 times) and a small divergent angle (120°) were observed, at a 20 mA operation current, on the treated LED structure when compared to a standard LED without the conical air-void structure. In this electroluminescence spectrum, the emission intensity and the peak wavelength varied periodically by corresponding to the conical air-void patterns that were measured through a 100 nm-optical-aperture fiber probe. The conical air-void structure reduced the compressed strain at the GaN/sapphire interface by inducing the wavelength blueshift phenomenon and the higher internal quantum efficiency of the photoluminescence spectra for the treated LED structure.
منابع مشابه
An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays
Related Articles Conical air prism arrays as an embedded reflector for high efficient InGaN/GaN light emitting diodes Appl. Phys. Lett. 102, 061114 (2013) Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory J. Appl. Phys. 113, 063108 (2013) Identifying the efficient inter-conversion between singlet...
متن کاملInGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors
InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n(+)-GaN) in the 12-period n(+)-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process....
متن کاملImproving Blue InGaN Laser Diodes Performance with Waveguide Structure Engineering
To enhance lasers’ power and improve their performance, a model wasapplied for the waveguide design of 400 nm InGaN/InGaN semiconductor laser, whichis much easier to implement. The conventional and new laser structures weretheoretically investigated using simulation software PICS3D, which self-consistentlycombines 3D simulation of carrier transport, self-heating, and opt...
متن کاملGraded-host phosphorescent light-emitting diodes with high efficiency and reduced roll-off
Related Articles Encapsulating light-emitting electrochemical cells for improved performance Appl. Phys. Lett. 100, 193508 (2012) Efficiency degradation behaviors of current/thermal co-stressed GaN-based blue light emitting diodes with vertical-structure J. Appl. Phys. 111, 093110 (2012) Influence of laser lift-off on optical and structural properties of InGaN/GaN vertical blue light emitting d...
متن کاملEffects of In profile on simulations of InGaN/GaN multi-quantum-well light-emitting diodes
Articles you may be interested in Effect of V-defects on the performance deterioration of InGaN/GaN multiple-quantum-well light-emitting diodes with varying barrier layer thickness Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes Effect of an electron blocking layer on the piezoelectric field in InGaN/GaN multiple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 19 Suppl 1 شماره
صفحات -
تاریخ انتشار 2011